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A ls, 2pa valence bond wave function for the B 1Z+ state of the hydrogen molecule is variationally 
optimized with respect to the two atomic orbital exponents for internuclear separations in the vicinity 
of the equilibrium value. The optimization is tested by use of the molecular virial theorem, and the 
resulting binding energy compares favourably with other calculations based on limited sets of atomic 
orbitals. The nature of the electron distribution in the state is analyzed by use of a particular kind of 
two electron correlation diagram. This analysis indicates that the actual electron distribution is largely 
ionic in the vicinity of the equilibrium separation in contrast to the formal covalency of the wave function. 

Eine is, 2pa Valenzstruktur-Wellenfunktion fiir den B1X+-Zustand des Wasserstoffmolekiils 
wird nach der Variationsmethode beziiglich der beiden Atomorbital-Exponenten optimiert. Als 
Kernabst~inde werden Werte in der Niihe des Gleichgewichtsabstandes gew~ihlt. Die Optimierung 
wird mit dem Virialtheorem getestet; weiterhin hat die Bindungsenergie einen vergleichbaren Wert 
mit entsprechenden Ergebnissen, die mit beschr~inkten S~itzen von Atomorbitalen erreicht wurden. 
Die Elektronenverteilung fiir diesen Zustand wird mit Hilfe eines speziellen Zwei-Elektronen-Korrela- 
tionsdiagrammes untersucht. Dabei ergibt sich, dab die tats~ichliche Elektronenverteilung stark ionisch 
ftir Kernabst~inde nahe dem Gleichgewichtsabstand ist, im Gegensatz zur formal kovalenten Wellen- 
funktion. 

Une fonction d'onde de liaisons de valence Is, 2pa pour l'6tat BIS_,~ de la mol6cule d'hydrog~ne est 
optimis6e par variation par rapport aux exposants des orbitals atomiques pour des distances inter- 
nucl6aires voisines de la distance d'6quilibre. L'optimisation est test6e par l'emploi du th6or~me du 
viriel mol6culaire, et l'6nergie de liaison correspondante est comparable/t celle obtenue par d'autres 
calculs darts des bases limit6es d'orbitales atomiques. La nature de la distribution 61ectronique dans 
l'6tat est analys6e en utilisant une esp6ce particuli6re de diagramme de corr61ation bi61ectronique. Cette 
analyse indique que la v6ritable distribution 61ectronique est largement ionique au voisinage de la 
distance d'6quilibre en contraste avec l'aspect de covalence formelle de la fonction d'onde. 

1. Introduction 

The B1 + Zu state of the hydrogen  molecule is a well-esteemed prototype of a 
low excited molecular  state, and  the study of this state has been pursued th roughou t  
the history of q u a n t u m  chemistry. However,  only quite recently has a really high 
accuracy wave funct ion  been reported by Kolos  and  Wolniewicz [13. The avail- 
abil i ty of a high-accuracy wave funct ion does not,  on  the other hand,  make  treat- 
ments  based on  simpler funct ions  superfluous, especially since the Kolos-Wolnie -  
wicz funct ion is so complex that  extensions to larger molecules are no t  presently 
feasible. 

The purpose  of the present  note  is twofold. We first report  a var ia t ional  cal- 
cula t ion  on  the B state, using a ls, 2po valence b o n d  wave function. The varia- 
t ional  parameters  are the orbi tal  exponents  of the a tomic orbitals,  and we shall 
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investigate the dependence of these parameters on the internuclear separation in 
the vicinity of the equilibrium. This wave function is subsequently employed to- 
gether with other types of functions in an analysis of the nature of the state which 
is intended to supplement the discussion given by Kolos and Wolniewicz [1]. 
The present discussion differs from the Kolos-Wolniewicz analysis by using a 
graphical approach to illustrate the difference between the wave functions with 
a view specifically towards their so-called ionic and/or covalent nature. 

2. Wave Function and Energies 
1 + The wave function for the lowest Xu state of hydrogen is in the present 

approach a valence bond combination of ls and 2po- atomic orbitals: 

T = g [-su(1) pb(2) + pb(1) S~(2) -- Sb(1 ) pa(2) -- pa(1) Sb(2)] (1) 

where N is a normalization factor and: 

Sa(l ) ~- n--1/2 (3/2 exp( -  (s ral) 

p~(1) = rc -1/2 (p5/2 r~ 1 COS0al e x p ( -  (vral) 

with analogous expressions for the orbitals on atom b. The phases in Eq. (1) cor- 
respond to local coordinate systems with z-axes pointing towards each other. For 
simplicity we have omitted the two-electron spin function for the singlet state. 

A wave function of this form was used by Mulliken and Rieke [2] and Shull [3] 
in discussion of electron transition probabilities. In neither case was any optimi- 
zation of the function attempted. Tschudi and Cohan [4] performed a partial 
optimization in which they determined the 1s-orbital exponent variationally 
while keeping the 2pa-orbital exponent fixed at its limiting value for infinite 
separation. We shall here optimize the wave function fully by treating both orbital 
exponents as variational parameters. The wave function is in this way automatically 
scaled such that the molecular virial theorem is fulfilled [5, 6] (vide infra). 

The Hamiltonian for the two electrons in the hydrogen molecule is (in atomic 
units): 

1 1 
J f  = - T V'2 + + - -  (2) 

i= 1 rai rbi r12 R 

where the nuclear-nuclear repulsion (l/R) is included since we wish to calculate 
the total binding energy. The optimal values of the orbital exponents are now 
found by minimizing the energy: 

E = (~e I~l  ~ )  (3) 

numerically with respect to these two non-linear parameters for the internuclear 
separations listed in Table 1. For each value of R the two parameters (s and (p were 
varied systematically, first in rather coarse grids and subsequently in finer inter- 
vals in order to close in on the optimal values. All the necessary integrals were 
calculated exactly with the Diatom molecular integral program [7] and the 
resulting minimized energies are shown in Table 1 together with the corresponding 
values of (s and (p. Also included in the table are the results of some other non- 
empirical calculations. 
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Table 1. Calculated energies for the B 1Z,2 state of the hydrogen molecule 
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R (a.u.) This work Other calculations of the energy (eV) 

(s ~p E (eV) a A B C D E 

1.40 1.39 0.520 - 1.46 - 1.29 - 1.92 -2.17 b 
1.60 1.33 0.548 -2 .08 -2 .07 
2.44 1.16 0.613 -2 .70  -2 .54 -2 .64  -2.33 -3.21 -3.58 
2.80 1.12 0.608 -2 .59  -2.41 -2 .59 
4.00 1.04 0.554 -1 .85  -1.71 -2 .18 -1 .27 b -2.38 -3 .00  

a The energies are given relative to the sum of the energies of a ls and a 2s state of the separated 
atoms. 

b Interpolated values. 
A Tschudi and Cohan (Ref. [4]) using Eq. (1) with ~p = 0.50. 
B Tschudi and Cohan (Ref. [4]) using Eqs. (1) and (4) with ~p = 0.50. 
C Phillipson and Mulliken (Ref. 1-10]). 
D Taylor (Ref. 1-13]). 
E Kolos and Wolniewicz (Ref. 1,1]). 

Before turning to a discussion of the results we shall consider the connection 
to the molecular virial theorem, according to which the kinetic energy and the 
potential energy ofa diatomic molecule are related to the total energy, as follows [8] 

Eki n = -- E - R (dE~dR), (4 a) 
Epo t = 2E + R(dE/dR) .  (4 b) 

It was pointed out above that the wave function is automatically scaled to 
fulfill these relations in the present approach. This is shown explicitly in Table 2 

Table 2. Kinetic and potential energy at the equilibrium separation (all energies in eV) 

E Eki n ( T )  EkiJ(T ) Epo t ( V )  Epot/(V ) 

- 19.701 19.190 19.378 0.990 - 38.891 - 39.078 0.995 

for the experimental equilibrium separation. In this table the energies calculated 
from Eqs. (4) are compared to the kinetic and potential energies calculated directly 
from the optimized wave function by the relations. 

( T )  = ( ~  ITI ~ )  (5a) 

( v )  = (~,  IVl ~e) (5b) 

where T and 19 are respectively the kinetic energy part and the potential energy 
part of the Hamiltonian Eq. (2). The value of the first derivative of the energy with 
respect to R, which is required in Eqs. (4), is found by fitting a polynomium to the 
five computed energies in Table 1. This gives dE/dR = 0.209 (eV/ao) for R = 2.44 a.u. 
which shows that the equilibrium separation predicted by the present wave func- 
tion is somewhat shorter than the experimental. From the ratios given in the 
table it follows that the virial theorem is in fact fulfilled within the accuracy of the 
computations (considering the uncertainty in the estimate of the first derivative 
of the energy). 



112 A.E. Hansen and K. Kampp: 

3. Discussion 

The most conspicuous feature of Table 1 is perhaps the distance variation of the 
2pa orbital exponent which goes through a miximum in the vicinity of the equili- 
brium separation. This indicates, in some loose sense, a shift in the balance 
between nuclear and electronic screening [9], however, we do not want to go too 
deeply into such arguments since the concept of screening is actually rather ill- 
defined [9] for an electronic pair wave function like the present. On the other hand, 
the magnitude of ~p, which is close to the hydrogenic value, leaves little doubt 
about a non-trivial Rydberg-character to this state [2]. This interpretation is 
supported by the fact that the ls orbital exponents are close [9, 10] to the values 
in H~-. 

Turning now to the energies listed in Table 1, it is observed that the simultane- 
ous optimization of (s and (p leads to some improvement over the Tschudi and 
Cohan calculation [4] (column A) in which ~p was fixed at 0.50. Our results are 
also slightly better than the results obtained by Tschudi and Cohan in a second 
calculation (column B) in which they included interaction with the ionic function: 

~i = N~[s'a(1) s'a(2) - s~(1) s~(2)] (6) 

with optimized orbital exponent ('s. The Phillipson-Mulliken treatment [10] 
quoted in column C is a molecular orbital calculation, based on linear combina- 
tions of ls atomic orbitals, where the orbital exponent in the bonding and anti- 
bonding orbitals were optimized independently. The over-all agreement between 
our results and the results quoted in columns A, B and C presumably indicates 
that we are close to the limit of what can be obtained with only two non-linear 
variational parameters. 

The error in the binding energy is about 0.9 eV (compare column E) which 
incidentally is close to the absolute error in the best Hartree-Fock calculation on 
the ground state [11, 12]. Part of this error is undoubtedly associated with the 
neglect of angular correlation [12] in the electronic motion. The magnitude of 
this can be estimated from a configuration interaction calculation by Taylor [133 
and seems to be of the order of 0.2 eV, which is again close to the corresponding 
value for the ground state [123. To correct for the remaining error of about 
0.7 eV it is necessary to include more linear and/or non-linear parameters. In the 
full calculation by Kolos and Wolniewicz [1] a total of 60 linear and 4 non-linear 
parameters was employed; Taylor [133 obtained a good compromise (column D 
in Table 1) using 8 non-linear parameters. 

4. Analysis of the Wave Functions 

The B 1Z~+ state of the hydrogen molecule is in the lowest approximation 
described by the wave function (6) which arises from simple molecular orbital 
theory and from simple Heitler-London theory as well. This kind of wave function 
ascribes an ionic character to the state, and early discussions of molecular electro- 
nic transition probabilities were founded on this notion (see Ref. [2] and re- 
ferences therein). The improvements which Phillipson and Mulliken [10] obtained 
by use of different exponents in respectively the bonding and antibonding molecular 
orbitals can be viewed as the result of allowing some covalent character in the 
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state. This is seen by observing that the expansion of their wave function contains 
terms of the form sa(1 ) s~(2) - S'a(1) %(2). In the lowest approximation such terms 
vanish (s'a = s,) giving the function (6) back. Following this line of thought the 
valence bond wave function Eq. (1), apparently represents the antipode to the 
ionic function Eq. (6) since it consists of "covalent products" only. 

The conclusion of Tschudi and Cohan [4] and of the present work is then 
that the ls, 2pa valence bond wave function is a better approximation than the 
predominantly ionic simple molecular orbital functions (in the vicinity of the 
equilibrium separation). Kolos and Wolniewicz [1] reached the same conclusion 
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Fig. I. Probabil ity densities for the B state as function of the position of electron 2 along the internuclear 

axis assuming electron 1 at nucleus a 

by considering the overlap integrals between their very accurate wave function 
and the wave functions (1) and (6), using orbital exponents for the separate-atom 
limit in the latter cases. The Phillipson-Mulliken function was not considered. 
At the equilibrium separation they found that the overlap with the valence 
bond function (1) is 0.7 compared to an overlap with the ionic function (6) of 
only 0.3. On the other hand, for somewhat longer separations (3 < R < 7 a.u.) 
they found that the ionic function had a larger overlap with the accurate function 
than the valence bond function. This seems to indicate a change in the nature of 
the state such that it becomes predominantly ionic in this intermediate region. 

The designation ionic and covalent have in the preceding paragraphs been 
based on the formal appearance of the wave functions. However, a more realistic 
picture of the electron distributions can be gained from a type of diagram which 
was used by McLean, Weiss and Yoshimine [12] in their study of the correlation 
effects in the ground state. In this diagram the square of the wave function is 
plotted as function of the position of electron 2 along the internuclear axis assum- 
ing that electron 1 is fixed at nucleus a. Curve A of Fig. 1 shows the resulting graph 
for the simple ionic function (6); the Phillipson-Mulliken function [10] is shown 
as curve B and the valence bond function (1) as curve C. The Kolos and Wolniewicz 
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function [1] is not reported in sufficient detail for such a representation. The 
wave functions are all cases taken with optimal orbital exponents for the equilibrium 
distance, and the scales are chosen to yield identical peak heights. 

We note in passing that the density of electron 2 is zero at nucleus b in all the 
the graphs. This follows from the fact that the spatial part of the wave function for 
a tU, state is symmetric in the electrons and antisymmetric in the nuclei. When 
electron 1 is fixed at nucleus a these two requirements can be met only if the 
density of 2 is strictly zero at nucleus b. This feature must therefore persist in any 
approximation which represents the symmetry of the state correctly. 

The two first curves in Fig. 1 are in good agreement with the qualitative ex- 
pectations. In the ionic function the density of electron 2 is centered at the nucleus 
where electron 1 is already located and the density vanishes beyond nucleus b. 
In the Phillipson-Mulliken case some of the density of electron 2 is shifted out on 
the far side of nucleus b, thereby introducing some covalent character. This shift 
in the density of electron 2 is further enhanced in the valence bond function, 
however, the bulk of the density is still found at the nucleus where electron 1 is. 
Therefore, in spite of its formally covalent construction the ls, 2pa function, 
Eq. (1), actually represents an electron distribution which is largely ionic. This 
is of course intimately connected to the small numerical value of ~p, since such a 
2pa atomic orbital centered on atom b will have its radial maximum in the region 
around center a. 

The different wave functions depicted in Fig. 1 therefore all agree on assigning 
a large amount of ionic character to the B state in the region around the equilibrium 
separation. There are on the other hand rather severe differences between the 
details in the electron distribution predicted by the functions. These differences 
are (part of) the physical basis for the spread in the calculated values for the 
intensity of the transition from the ground state to the B state [-2, 3]. 
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